Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
J Biol Chem ; 300(3): 105699, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301891

RESUMO

DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.


Assuntos
Queratinas , Lectinas Tipo C , Modelos Moleculares , Humanos , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Receptor de Manose/química , Mutagênese , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Domínios e Motivos de Interação entre Proteínas , Cristalografia por Raios X
2.
PLoS One ; 19(2): e0298442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38329956

RESUMO

BACKGROUND: Helicobacter pylori infections are generally acquired during childhood and affect half of the global population, but its transmission route remains unclear. It is reported that H. pylori can be internalized into Candida, but more evidence is needed for the internalization of H. pylori in human gastrointestinal Candida and vaginal Candida. METHODS: Candida was isolated from vaginal discharge and gastric mucosa biopsies. We PCR-amplified and sequenced H. pylori-specific genes from Candida genomic DNA. Using optical and immunofluorescence microscopy, we identified and observed bacteria-like bodies (BLBs) in Candida isolates and subcultures. Intracellular H. pylori antigen were detected by immunofluorescence using Fluorescein isothiocyanate (FITC)-labeled anti-H. pylori IgG antibodies. Urease activity in H. pylori internalized by Candida was detected by inoculating with urea-based Sabouraud dextrose agar, which changed the agar color from yellow to pink, indicating urease activity. RESULTS: A total of 59 vaginal Candida and two gastric Candida strains were isolated from vaginal discharge and gastric mucosa. Twenty-three isolates were positive for H. pylori 16S rDNA, 12 were positive for cagA and 21 were positive for ureA. The BLBs could be observed in Candida cells, which were positive for H. pylori 16S rDNA, and were viable determined by the LIVE/DEAD BacLight Bacterial Viability kit. Fluorescein isothiocyanate (FITC)-conjugated antibodies could be reacted specifically with H. pylori antigen inside Candida cells by immunofluorescence. Finally, H. pylori-positive Candida remained positive for H. pylori 16S rDNA even after ten subcultures. Urease activity of H. pylori internalized by Candida was positive. CONCLUSION: In the form of BLBs, H. pylori can internalize into gastric Candida and even vaginal Candida, which might have great significance in its transmission and pathogenicity.


Assuntos
Candidíase Vulvovaginal , Infecções por Helicobacter , Helicobacter pylori , Descarga Vaginal , Feminino , Humanos , Urease/genética , Infecções por Helicobacter/microbiologia , Fluoresceína-5-Isotiocianato , Ágar , Antígenos de Bactérias/genética , Mucosa Gástrica/microbiologia , Candida/genética , Biópsia , DNA Ribossômico , Ureia , Proteínas de Bactérias/genética
3.
J Ginseng Res ; 47(6): 784-794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38107390

RESUMO

Background: ginsenoside Rg5 is a rare ginsenoside with known hypoglycemic effects in diabetic mice. This study aimed to explore the effects of ginsenoside Rg5 on skin wound-healing in the Leprdb/db mutant (db/db) mice (C57BL/KsJ background) model and the underlying mechanisms. Methods: Seven-week-old male C57BL/6J, SLC7A11-knockout (KO), the littermate wild-type (WT), and db/db mice were used for in vivo and ex vivo studies. Results: Ginsenoside Rg5 provided through oral gavage in db/db mice significantly alleviated the abundance of apoptotic cells in the wound areas and facilitated skin wound healing. 50 µM ginsenoside Rg5 treatment nearly doubled the efferocytotic capability of bone marrow-derived dendritic cells (BMDCs) from db/db mice. It also reduced NF-κB p65 and SLC7A11 expression in the wounded areas of db/db mice dose-dependently. Ginsenoside Rg5 physically interacted with SLC7A11 and suppressed the cystine uptake and glutamate secretion of BMDCs from db/db and SLC7A11-WT mice but not in BMDCs from SLC7A11-KO mice. In BMDCs and conventional type 1 dendritic cells (cDC1s), ginsenoside Rg5 reduced their glycose storage and enhanced anaerobic glycolysis. Glycogen phosphorylase inhibitor CP-91149 almost abolished the effect of ginsenoside Rg5 on promoting efferocytosis. Conclusion: ginsenoside Rg5 can suppress the expression of SLC7A11 and inhibit its activity via physical binding. These effects collectively alleviate the negative regulations of SLC7A11 on anaerobic glycolysis, which fuels the efferocytosis of dendritic cells. Therefore, ginsenoside Rg5 has a potential adjuvant therapeutic reagent to support patients with wound-healing problems, such as diabetic foot ulcers.

5.
Cancer Med ; 12(18): 18861-18871, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37706628

RESUMO

BACKGROUND: Three-dimensional visualization preoperative evaluation (3D-VPE) and enhanced recovery after surgery (ERAS) have been suggested to improve outcomes of cancer surgery in patients, yet little is known regarding their clinical benefit in patients with gallbladder cancer (GBC). We hypothesized that the combination of 3D-VPE and ERAS would improve the outcome of patients undergoing surgery for GBC. OBJECTIVE: This study aimed to determine if 3D-VPE and ERAS can improve the outcomes and overall survival in patients with GBC, establishing a novel patient management strategy for GBC. METHODS: A total of 227 patients with GBC were recruited and divided into two groups: those who received traditional treatment between January 2000 and December 2010 (n = 86; the control group) and those who underwent 3D-VPE and ERAS between January 2011 and December 2017 (n = 141). Univariate and multivariate analyses were employed to assess the relationship among disease stages, lymph node invasion, and cell differentiation between the two groups. Cox regression analysis was used to investigate patient survival in these groups. RESULTS: Patients who underwent 3D-VPE and ERAS showed a significantly higher R0 resection rate (67.4% vs. 20.9%, p < 0.001) and dissected lymph node number (26.6 ± 12.6 vs. 16.3 ± 7.6 p < 0.001) compared to the control group. The median survival was 27.4 months, and the 1- and 3-year survival rates were 84.4% and 29.8%, respectively, in patients who received combined management; in the control cohort, the median survival was 12.7 months, and the 1- and 3-year survival rates were 53.5% and 15.1%, respectively. In addition, some postoperative complications and risk factors were diminished relative to the traditionally treated patients. CONCLUSION: The implementation of 3D-VPE and ERAS can significantly improve the prognosis and outcomes of patients with GBC and should be considered for wide use in clinical practice.

6.
J Biol Chem ; 299(11): 105288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748650

RESUMO

Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.


Assuntos
Dano ao DNA , Ubiquitina-Proteína Ligases , Ligação Proteica , Domínios Proteicos , Peptídeos , Reparo do DNA
7.
RSC Adv ; 13(29): 20135-20149, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37416911

RESUMO

Tribocorrosion is one of the most common forms of failure of biomedical titanium alloys. As the passive film of titanium alloys is highly dependent on oxygen conditions, the passivation behavior and the microstructure of the passive film of Ti-6Al-4V under tribocorrosion in 1 M HCl with a low dissolved oxygen concentration (DOC) were studied by means of electron probe microanalysis (EPMA), Ar-ion etched X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) milling and high resolution transmission electron microscopy (HRTEM). The results showed that the protective ability of the regenerated passive film decreased sharply under low DOC. Al and V ions dissolved in excess, and a large number of oxygen atoms entered the matrix, leading to internal oxidation. Structural characterization indicated that Ti atoms occupied more metal lattice points in the regenerated passive film and that the high dislocation density in the deformed layer caused by wear facilitated the diffusion of Al and V. Finally, the first-principles calculation showed that Al had the minimum vacancy formation energy.

8.
Mol Biol Rep ; 50(7): 5667-5674, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37209327

RESUMO

BACKGROUND: Ferroptosis plays an important part in Acute lung injury (ALI) caused by sepsis. The six-transmembrane epithelial antigen of the prostate 1 (STEAP1) has potential effects on iron metabolism and inflammation but reports on its function in ferroptosis and sepsis-caused ALI are lacking. Here we explored the role of STEAP1 in sepsis-caused ALI and the possible mechanisms. METHODS AND RESULTS: Lipopolysaccharide (LPS) was added to human pulmonary microvascular endothelial cells (HPMECs) to form the sepsis-caused ALI model in vitro. The Cecal ligation and puncture (CLP) experiment was performed on C57/B6J mice to form the sepsis-caused ALI model in vivo. The effect of STEAP1 on inflammation was investigated by PCR, ELISA, and Western blot for the inflammatory factors and adhesion molecular. The reactive oxygen species (ROS) levels were detected by immunofluorescence. The effect of STEAP1 on ferroptosis was investigated by detecting malondialdehyde (MDA) levels, glutathione (GSH) levels, Fe2+ levels, cell viability, and mitochondrial morphology. Our findings suggested that STEAP1 expression was increased in the sepsis-induced ALI models. Inhibition of STEAP1 decreased the inflammatory response and ROS production as well as MDA levels but increased the levels of Nrf2 and GSH. Meanwhile, inhibition of STEAP1 improved cell viability and restored mitochondrial morphology. Western Blot results showed that inhibition of STEAP1 could affect the SLC7A11/GPX4 axis. CONCLUSION: Inhibition of STEAP1 may be valuable for pulmonary endothelial protection in lung injury caused by sepsis.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Sepse , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/metabolismo , Antígenos de Neoplasias , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Oxirredutases/metabolismo , Próstata/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/metabolismo
9.
Clin Immunol ; 251: 109325, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030526

RESUMO

Ischemia-reperfusion injury (IRI) is one of the most common complications in liver transplantation. METTL3 regulates inflammation and cellular stress response by modulating RNA m6A modification level. Here, the study aimed to investigate the role and mechanism of METTL3 in IRI after rat orthotopic liver transplantation. The total RNA m6A modification and METTL3 expression level was consistently down-regulated after 6 h or 24 h reperfusion in OLT, which is negatively associated with the hepatic cell apoptosis. Functionally, METTL3 pretreatment in donor significantly inhibited liver grafts apoptosis, improved liver function and depressed the proinflammatory cytokine/chemokine expression. Mechanistically, METTL3 inhibited apoptosis of grafts via upregulating HO-1. Moreover, m6A dot blot and MeRIP-qPCR assay revealed that METTL3 promoted HO-1 expression in an m6A-dependent manner. In vitro, METTL3 alleviated hepatocytes apoptosis by upregulating HO-1 under hypoxia/reoxygenation condition. Taken together, these findings demonstrate that METTL3 ameliorates rat OLT-stressed IRI by inducing HO-1 in an m6A-dependent manner, highlighting a potential target for IRI in liver transplantation.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Ratos , Animais , Transplante de Fígado/efeitos adversos , Fígado/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , RNA/metabolismo
10.
Materials (Basel) ; 16(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37109949

RESUMO

Scrap steel is a kind of resource that can be recycled indefinitely. However, the enrichment of arsenic in the recycling process will seriously affect the performance of the product, making the recycling process unsustainable. In this study, the removal of arsenic from molten steel using calcium alloys was investigated experimentally, and the underlying mechanism was explored based on thermodynamic principles. The results show that the addition of calcium alloy is an effective means of reducing the arsenic content in molten steel, with the highest removal percentage of 56.36% observed with calcium aluminum alloy. A thermodynamic analysis revealed that the critical calcium content required for arsenic removal reaction is 0.0037%. Moreover, ultra-low levels of oxygen and sulfur were found to be crucial in achieving a good arsenic removal effect. When the arsenic removal reaction occurs in molten steel, the oxygen and sulfur concentrations in equilibrium with calcium were wO=0.0012% and wS=0.00548%, respectively. After successful arsenic removal, the arsenic removal product of the calcium alloy is Ca3As2, which usually does not appear alone. Instead, it is prone to combining with alumina, calcium oxide, and other inclusions to form composite inclusions, which is beneficial for the floating removal of inclusions and the purification of scrap steel in molten steel.

11.
Elife ; 122023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912886

RESUMO

The mono-ubiquitination of the histone protein H2B (H2Bub1) is a highly conserved histone post-translational modification that plays critical roles in many fundamental processes. In yeast, this modification is catalyzed by the conserved Bre1-Rad6 complex. Bre1 contains a unique N-terminal Rad6-binding domain (RBD), how it interacts with Rad6 and contributes to the H2Bub1 catalysis is unclear. Here, we present crystal structure of the Bre1 RBD-Rad6 complex and structure-guided functional studies. Our structure provides a detailed picture of the interaction between the dimeric Bre1 RBD and a single Rad6 molecule. We further found that the interaction stimulates Rad6's enzymatic activity by allosterically increasing its active site accessibility and likely contribute to the H2Bub1 catalysis through additional mechanisms. In line with these important functions, we found that the interaction is crucial for multiple H2Bub1-regulated processes. Our study provides molecular insights into the H2Bub1 catalysis.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinação
12.
Environ Int ; 174: 107886, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989764

RESUMO

Gas emitted from landfills contains a large quantity of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), some of which are carcinogenic, teratogenic, and mutagenic, thereby posing a serious threat to the health of landfill workers and nearby residents. However, the global hazards of VOCs and SVOCs in landfill gas to human health remain unclear. To quantify the global risk distributions of these pollutants, we collected the composition and concentration data of VOCs and SVOCs from 72 landfills in 20 countries from the core database of Web of Science and assessed their human health risks as well as analyzed their influencing factors. Organic compounds in landfill gas were found to primarily result from the biodegradation of natural organic waste or the emissions and volatilization of chemical products, with the concentration range of 1 × 10-1-1 × 106 µg/m3. The respiratory system, in particular, lung was the major target organ of VOCs and SVOCs, with additional adverse health impacts ranging from headache and allergies to lung cancer. Aromatic and halogenated compounds were the primary sources of health risk, while ethyl acetate and acetone from the biodegradation of natural organic waste also exceeded the acceptable levels for human health. Overall, VOCs and SVOCs affected residents within 1,000 m of landfills. Air temperature, relative humidity, air pressure, wind direction, and wind speed were the major factors that influenced the health risks of VOCs and SVOCs. Currently, landfill risk assessments of VOCs and SVOCs are primarily based on respiratory inhalation, with health risks due to other exposure routes remaining poorly elucidated. In addition, potential health risks due to the transport and transformation of landfill gas emitted into the atmosphere should be further studied.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Medição de Risco , Instalações de Eliminação de Resíduos
13.
Nano Converg ; 10(1): 7, 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738341

RESUMO

Accurately detecting dynamic changes in bioactive small molecules in real-time is very challenging. In this study, a hemin-based peptide assembly was rationally designed for the colorimetric detection of active small molecules. Hemin-functionalized peptide nanotubes were obtained through the direct incubation of hemin (hemin@PNTs) and peptide nanotubes (PNTs) or were coassembled with the heptapeptide Ac-KLVFFAL-NH2 via electrostatic, π-π stacking, and hydrophobic interactions (hemin-PNTs). This new substance is significant because it exhibits the benefits of both hemin and PNTs as well as some special qualities. First, hemin-PNTs exhibited higher intrinsic peroxidase-like activity, which, in the presence of H2O2, could catalyze the oxidation of the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to yield a typical blue solution after 10 min at 25 ℃. Second, hemin-PNTs showed significantly higher activity than that of hemin, PNTs alone, or hemin@PNTs. Hemin-PNTs with a 20.0% hemin content may cooperate to improve catalytic activity. The catalytic activity was dependent on the reaction temperature, pH, reaction time, and H2O2 concentration. The nature of the TMB-catalyzed reaction may arise from the production of hydroxyl radicals. Fluorescence analysis was used to demonstrate the catalytic mechanism. According to this investigation, a new highly selective and sensitive colorimetric technique for detecting glutathione (GSH), L-cysteine, and glucose was established. The strategy demonstrated excellent sensitivity for GSH in the range of 1 to 30 µM with a 0.51 µM detection limit. Importantly, this glucose detection technique, which employs glucose oxidase and hemin-PNTs, is simple and inexpensive, with a 0.1 µM to 1.0 mM linear range and a 15.2 µM detection limit. Because of their low cost and high catalytic activity, hemin-PNTs are an excellent choice for biocatalysts in a diverse range of potential applications, including applications in clinical diagnostics, environmental chemistry, and biotechnology.

14.
Materials (Basel) ; 15(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363398

RESUMO

Tantalum and its alloys are regarded as equipment construction materials for processing aggressive acidic media due to their excellent properties. In this study, the influence of severe rolling (90%) on the dissolution rate of a cold-rolled Ta-4%W sheet in different directions was investigated during immersion testing and the corresponding mechanism was discussed. The results show that the dissolution rate of the cold-rolled sample is significantly lower than that of the undeformed sample. The corrosion resistance followed the sequence of "initial" < "90%-ND" < "90%-RD" < "90%-TD", while the strength is in positive correlation with the corrosion resistance. Severe rolling promotes grain subdivision accompanied by long geometrically necessary boundaries and short incidental dislocation boundaries on two scales in the cold-rolled sample. The volume elements enclosed by geometrically necessary boundaries form preferential crystallographic orientations. Such preferential crystallographic orientations can greatly weaken the electrochemical process caused by adjacent volume elements, resulting in greatly reduced corrosion rates in the severely deformed sample. The unexpected finding provides a new idea for tailoring the structures of tantalum alloys to improve both their strength and corrosion resistance.

15.
Phytother Res ; 36(12): 4398-4408, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36180973

RESUMO

Various studies have proven that phytosterols and phytostanols (PS) are lipid-lowering agents. These compounds play a role in regulating high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglyceride (TG) metabolism. Although various drugs are available and are currently used to treat dyslipidemia, the management of lipid abnormalities during the postmenopausal period remains a challenge. Thus, scientists are trying to develop new strategies to reduce serum lipids concentrations using natural products. However, the impact of PS administration on serum lipids in postmenopausal women remains unclear. Hence, the purpose of this study was to assess the effect of PS supplementation on the lipid profile in postmenopausal women based on a systematic review of the literature and a meta-analysis of randomized controlled trials. PubMed/Medline, Scopus, Embase, and Web of Science were searched to identify suitable papers published until January 18, 2022. We combined the effect sizes with the DerSimonian and Laird method using a random effects model. PS supplementation resulted in a significant decrease in TC (weighted mean difference [WMD]: -16.73 mg/dl) and LDL-C (WMD: -10.06 mg/dl) levels. No effect of PS supplementation on TG (WMD: -1.14 mg/dl) or HDL-C (WMD: -0.29 mg/dl) concentrations was detected. In the stratified analysis, there was a notable reduction in TC and LDL-C levels when the PS dose was ≥2 g/day (TC: -22.22 mg/dl and LDL-C: -10.14 mg/dl) and when PS were administered to participants with a body mass index ≥25 kg/m2 (TC: -20.22 mg/dl and LDL-C: -14.85 mg/dl). PS administration can decrease TC and LDL-C, particularly if the dose of administration is ≥2 g/day and if the participants are overweight or obese. Further high-quality studies are needed to firmly establish the clinical efficacy of PS usage in postmenopausal females.


Assuntos
Fitosteróis , Humanos , Feminino , Fitosteróis/farmacologia , LDL-Colesterol , Ensaios Clínicos Controlados Aleatórios como Assunto
17.
Front Immunol ; 13: 888385, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774786

RESUMO

Objective: This is the first systematic review and meta-analysis to determine the factors that contribute to poor antibody response in organ transplant recipients after receiving the 2-dose severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. Method: Data was obtained from Embase, PubMed, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Chinese Biomedical Literature Database (CBM). Studies reporting factors associated with antibody responses to the 2-dose SARS-CoV-2 vaccine in solid organ transplant recipients were included in our study based on the inclusion and exclusion criteria. Two researchers completed the literature search, screening, and data extraction. Randomized models were used to obtain results. Egger's test was performed to determine publication bias. Sensitivity analysis was performed to determine the stability of the result. The heterogeneity was determined using the Galbraith plot and subgroup analysis. Results: A total of 29 studies were included in the present study. The factors included living donor, BNT162b2, tacrolimus, cyclosporine, antimetabolite, mycophenolic acid (MPA) or mycophenolate mofetil (MMF), azathioprine, corticosteroids, high-dose corticosteroids, belatacept, mammalian target of rapamycin (mTOR) inhibitor, tritherapy, age, estimated glomerular filtration rate (eGFR), hemoglobin, and tacrolimus level were significantly different. Multivariate analysis showed significant differences in age, diabetes mellitus, MPA or MMF, high-dose corticosteroids, tritherapy, and eGFR. Conclusion: The possible independent risk factors for negative antibody response in patients with organ transplants who received the 2-dose SARS-CoV-2 vaccine include age, diabetes mellitus, low eGFR, MPA or MMF, high-dose corticosteroids, and triple immunosuppression therapy. mTOR inhibitor can be a protective factor against weak antibody response. Systematic Review Registration: PROSPERO, identifier CRD42021257965.


Assuntos
COVID-19 , Diabetes Mellitus , Transplante de Rim , Adulto , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Diabetes Mellitus/tratamento farmacológico , Rejeição de Enxerto/prevenção & controle , Humanos , Transplante de Rim/métodos , Ácido Micofenólico , Fatores de Risco , SARS-CoV-2 , Serina-Treonina Quinases TOR , Tacrolimo
18.
Huan Jing Ke Xue ; 43(7): 3562-3574, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791540

RESUMO

Through the investigation and detection of the surface water and sediments of Luoma Lake, the structure and occurrence characteristics of PFASs (perlyfluoroalkyl substances) in the two types of media were analyzed, and the principal component analysis method was used to analyze the characteristics of such substances in the surface water. The source was analyzed, and the potential health risks of such substances were evaluated using the risk quotient method. The results showed that a total of 13 PFASs were detected in the surface sediments of Luoma Lake, and one more species was detected in the surface water (PFTeA); ρ(ΣPFASs) in the surface water ranged from 46.09 to 120.34 ng·L-1, and ω(ΣPFASs) in sediments ranged from 2.22 to 9.55 ng·g-1. PFPeA was the major component in surface water, and the mass fraction of PFPeA was 38%. PFBA was the major component in sediment, and the mass fraction of PFPeA was 61%. The multi-media PFASs in Luoma Lake were mainly short-chain substances; the high concentration area of PFASs in the surface water of Luoma Lake was concentrated and distributed at the mouth of the northern rivers. Its concentration showed a decreasing trend from north to south, and the content of PFASs in the sediments showed a decreasing trend from southwest to northeast. The distribution of ΣPFASs, PFBA, and PFOS in the sediments of Luoma Lake and the TOC content in the sediment were related; the principal component analysis showed that the PFASs in the surface water of Luoma Lake were mainly from textile flame retardant, rubber product emulsification, food packaging processes and paper surface treatment industries, the metal electroplating industry, and leather and textile manufacturing industries. PFASs in the surface water of Luoma Lake were at a relatively low health risk level.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Fluorocarbonos/análise , Sedimentos Geológicos/química , Lagos , Medição de Risco , Água/análise , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 29(55): 82786-82798, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35752676

RESUMO

In recent years, perfluoroalkyl substances (PFASs) have been detected in all kinds of environmental media and can harm animals and human beings. They have attracted the attention of environmental workers worldwide and have become another research hotspot in the field of environment. However, analyses of PFASs have seldom been studied systematically. Therefore, this study summarizes the available data in 6756 publications (2000-2022) using the CiteSpace software to provide insights into the specific characteristics of PFASs and consequently shows global development trends that scientists can use for establishing future research directions. As opposed to traditional review articles by experts, this study provides a new method for quantitatively visualizing information about the development of this field over the past 23 years. Results show that the countries with more research in this field are mainly the USA and China. The research on PFASs is mainly concentrated in environmental sciences and ecology. Zhanyun Wang and Robert C. Buck's research has the highest influence rate in this field, and their research group is worthy of attention. Through the analysis of hot keywords, we conclude that the research hotspots are mainly focused on PFASs' transmission media and pathways, human exposure and the mechanism of toxicity, and degradation and remediation measures. Collectively these results indicate the major themes of PFAS research are as follows: (1) transmission media and pathways, (2) human exposure and the mechanism of toxicity, (3) degradation and remediation measures. This study maps the major research domains of PFAS research; explanations and implications of the findings are discussed; and emerging trends highlighted.


Assuntos
Fluorocarbonos , Humanos , Animais , Fluorocarbonos/análise , Monitoramento Ambiental , Exposição Ambiental , Poluição Ambiental , Ecologia
20.
Micromachines (Basel) ; 13(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744535

RESUMO

The Bi/Sn-doped aluminosilicate glass samples were prepared using a melting-quenching method and their near-infrared (NIR) emission properties were studied. An ultra-broadband NIR emission ranging from 950 nm to 1600 nm was observed in all samples under 480 nm excitation, which covered the whole fiber low-loss window. The NIR emission spectrum showed that the maximum emission peak was about 1206 nm and the full width at half maximum (FWHM) was about 220 nm. Furthermore, the NIR emission intensity strongly depends on the composition of the glass, which can be optimized by modulating the glass composition. The Bi0 and Bi+ ions were the NIR luminescence source of the glass samples in this paper. The Bi/Sn-doped aluminosilicate glass has the potential to become a new type of core fiber material and to be applied to optical fiber amplifiers (OFAs), based on its excellent performance in ultra-broadband NIR emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...